IJCNS publication QKD

Resource file: 
Introduction: 
In this communication, results of running tests on standard telecommunication metropolitan network 1550 nm fiber applied to a quantum channel to EPR S405 Quelle prototype systems installed in National Laboratory for Quantum Technologies WUT and in CompSecur Wroclaw are reported.
Description: 

In this communication, results of running tests on standard telecommunication metropolitan network 1550 nm fiber applied to a quantum channel to EPR S405 Quelle prototype systems installed in National Laboratory for Quantum Technologies WUT and in CompSecur Wroclaw are reported. Testing was carried out by means of the original design and applied special data card collecting parameters of functioning system allowing for assessment of quality of quantum channel. Several trials were performed using various configurations of standard 1550 nm fiber patch-cord up to length of 6.5 km with additional usage of various patch-cords with weldings and connectors which typically present in already installed commercial metropolitan communication networks. The implementation of this testing indicated that the rigorous maintenance of photon polarization is required for quantum information exchange upon EPR S405 Quelle functioning. The polarization of optical signal turned out to be, however, very unstable for the tested connection which resulted in very rapid QBER rise precluding practical usefulness of this connection for secure quantum exchange of cryptographic key over practically significant distances. It have been identified that the main obstacle was the polarization decoherence caused by weldings and connectors in standard patch-cords and accidental strains in fibers as well as generally poor transmitting properties of 1550 nm fiber for much shorter wave-length photons used by the Quelle system. To maintain the quantum channel active, very frequent manual corrections of polarization control were required. So it is expect that by design and application of an automatic polarization control module, one would stabilize visibility ratio and lower QBER to an acceptable level conditioning possible future implementation of entangled QKD system in commercial networks.