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Quantum generators of random 
numbers
Marcin M. Jacak1,4, Piotr Jóźwiak2,4, Jakub Niemczuk1,4 & Janusz E. Jacak  3,4*

Generation of random numbers is a central problem for many applications in the field of information 
processing, including, e.g., cryptography, in classical and quantum regime, but also mathematical 
modeling, Monte Carlo methods, gambling and many others. Both, the quality of the randomness and 
efficiency of the random numbers generation process are crucial for the most of these applications. 
Software produced pseudorandom bit sequences, though sufficiently quick, do not fulfill required 
randomness quality demands. Hence, the physical hardware methods are intensively developed 
to generate truly random number sequences for information processing and electronic security 
application. In the present paper we discuss the idea of the quantum random number generators. We 
also present a variety of tests utilized to assess the quality of randomness of generated bit sequences. 
In the experimental part we apply such tests to assess and compare two quantum random number 
generators, PQ4000KSI (of company ComScire US) and JUR01 (constructed in Wroclaw University of 
Science and Technology upon the project of The National Center for Research and Development) as 
well as a pseudorandom generator from the Mathematica Wolfram package. Finally, we present our 
new prototype of fully operative miniaturized quantum random generator JUR02 producing a random 
bit sequence with velocity of 1 Mb/s, which successfully passed standard tests of randomness quality 
(like NIST and Dieharder tests). We also shortly discuss our former concept of an entanglement-
based quantum random number generator protocol with unconditionally secure public randomness 
verification.

The turn of the 20th and 21st centuries can be considered the beginning of the currently observed rapid develop-
ment and spreading of information technology in almost all areas of economy and science and in the sphere of 
utility. Information technology in many key aspects requires taking into account in algorithms the generating 
of random variables. Hence, the problem of random number generators plays a fundamental role in the field of 
information technology, in particular, of information security.

The current applications of random number generators (RNGs) extend to the area of information technol-
ogy in terms of:

•	 applications in the field of cryptography—for individual user applications;—for generation of random ini-
tialization sequences (so-called seeds) for encryption algorithms, authentication or digital signature;—for 
key generation (for asymmetric and symmetric cryptography, e.g., for the One Time-Pad cipher1 to ensure 
unconditional security), nonces/initiating vectors (IV), challenges for authentication, selection of exponents 
in the Diffie-Hellman protocol

•	 other IT applications: e.g., tags/tokens for communication protocols, for indexing in databases, etc.
•	 statistical applications (e.g., selection of a representative sample for statistical analysis)
•	 numerical simulations of the Monte Carlo type
•	 nondeterministic behavior of artificial intelligence (AI)—AI in computer games, in self-controlled devices 

(e.g., drones), etc.
•	 AI algorithms: neural networks (e.g., random weighting for networks) and genetic algorithms (e.g., randomly 

introducing mutations, randomly mixing representatives)
•	 structures and support services of currently popular cryptocurrencies (e.g., bitcoin wallets, bitcoin exchanges, 

etc.)
•	 games of chance (e.g., online casinos, also for cryptocurrencies)
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•	 randomness in control processes (important problem of sample selection for control processes quality)
•	 randomness in administration (e.g., drawing the order on election lists)

The above list briefly shows the scale of the range of the application of randomness and of random number 
generators. In this context, the quality of randomness and its truthfulness become a fundamental problem.

The consequences of the predictability of the generated classical pseudorandom sequences are obvious—the 
lack of a true randomness in any of the previously indicated applications is an obstacle to the intended func-
tioning. In the case of cryptographic applications, the consequences can be particularly severe. The problem 
with classic random number generators, i.e., pseudorandom number generators, consists in the possibility to 
know the deterministic process of pseudorandom generation by unwanted persons. This may result, in the case 
of cryptography, in compromising a myth of security. Another problem may be the incorrect handling of the 
generated sequence—mostly in cryptographic uses, the generated random sequence is applied once. Its multiple 
usage may lead to a security breach (e.g., in the case of the OTP cipher, a sufficiently long key should be truly 
random and used once in that protocol, otherwise it will be possible to break the code). The scale of threat can 
be illustrated by selected attacks and information about threats as listed below:

•	 2006–2012—over the years there have been many reports of attacks on cryptographic keys generated by weak 
PRNGs (which allows for example to carry out a brute force attack on SSH secured with RSA keys)2,3

•	 2010—a spectacular attack was carried out on users of Sony’s PlayStation 3 (PS3) game console (data was 
stolen as many as 77 million users). The attack was carried out using a flaw in the implementation of the 
ECDSA algorithm by Sony (disclosed materials reported that the same random number was mistakenly used 
multiple times as the so-called nonce for authentication)4

•	 2012—two groups of researchers revealed numerous RSA encryption keys that were then actively used on 
the Internet as secure and were at risk of being broken due to insufficient random generator that was used 
to create them5

•	 2013—following Snowden’s disclosure of these shortcomings to the U.S. National Security Agency (NSA), 
Reuters6 and New York Times7 conducted investigations revealing that the NSA was intentionally secretly 
lowered the security of the world’s popular hardware and programming solutions for the purpose of crypto-
attacks on encrypted content (including attacks on RNGs):

–	 Dual EC DRBG (Dual Elliptic Curve Deterministic Random Bit Generator) was used for this, a PRNG 
created and strongly pushed as a standard by the NSA. Only in 2013 it turned out that the NSA was the 
only one to have a backdoor for this generator and thanks to this the NSA was able to crack the cryp-
tographic keys that had been generated using these generators. Upon disclosure, RSA Security and the 
US National Institute of Standards and Technology (NIST) instructed not to use the Dual EC DRBG 
generator.

–	 NSA carried out a secret project code-named Bullrun, focusing on exploiting vulnerabilities in a dis-
seminated PRNG, to which it had access at random, in various devices (e.g., Juniper).

–	 Intel and Via on-chip HRNG motherboard random number generators probably also had backdoors8. 
It has been indicated that the RdRand and Padlock instructions most likely have backdoors in Linux 
kernels up to v 3.13.

–	 Suspected scandal over NSA9 eavesdropping of 35-country leaders was just related to the use of attacks 
on RNG.

•	 2013—Google confirmed that the IBM Java SecureRandom class in Java Cryptography Architecture (JCA) 
generated repetitive (and therefore predictable) sequences, which compromised application security made 
for Android to support the electronic currency Bitcoin – the equivalent of USD large amount in Bitcoins10,11 
was stolen.

•	 2014—It is suspected that the attack on the Tokyo cryptocurrency exchange MtGox, in which more than 
800,000 Bitcoins were stolen (which resulted in the declaration of bankruptcy by MtGox) was related to an 
attack on RNG12

•	 2015—Hard-to-detect remote attack using an externally attached hardware Trojan horse on FPGA-based 
TRNGs presented13

•	 2015—theft of 18,866 bitcoins from the Bitstamp exchange (12% of the currency traded on this exchange) – 
attack signature of the RNG attack14

•	 2017—ANSI x9.31 PRNG compliant to 2016 FIPS USA (Federal Information Processing Standards) – com-
promised if used with hard-coded seed (DUHK attack—Don’t Use Hard-coded Keys)15

The presented above examples clearly show that classic random number generators may be exposed to various 
attacks, or may have the so-called backdoors. This justifies the need to develop alternative technologies that could 
replace the classic generators on a large scale. The most promising, because they have a fundamental justification 
for the randomness in the formalism of quantum mechanics, are quantum random number generators.

Classical random number generators, due to the deterministic generation process (dictated by deterministic 
laws of classical physics or deterministic mathematical information algorithms), generate sequences which, 
despite the perfect balance between the digits 0 and 1, will inevitably always be characterized by the presence of 
certain deterministic long-range patterns – correlations that can pose a potential risk to IT security, unexpected 
errors in scientific simulations or gaps in a physical processes testing16–18.
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It should also be emphasized that regardless of the reduction of the above-mentioned threats (e.g., using 
randomness tests to detect repetitive patterns, adequate security of the generation process, one-time use of the 
generated sequences), there is a certain threat, which will not be able to handle it within classical computer sci-
ence—it is a quantum computer. The appearance of an efficient quantum computer (currently pseudo-quantum 
computers are being commercialized, e.g., DWave19 significantly exceeding the computing power of classic 
devices20, moreover Google presented recently the fully operational quantum machine Sycamore to demonstrate 
Quantum Supremacy21, and later Chinese scientists presented a photonic quantum computer, called Jiuzhang22) 
will cause any classical random number generator to be potentially endangered—theoretically, a quantum com-
puter will find the deterministic nature of the generation process in a real time, as long as this process is based 
on the phenomenon of classical physics. The answer to this threat seems to be quantum random number genera-
tors, which are becoming more and more popular, despite the fact that the prospect of an efficient large scalable 
entanglement-based quantum computer is still postponed due to current technological constraints.

Types of random number generators
There are many types of random number generators. They can be divided in relation to e.g. the type of the gen-
eration process—software random number generators (software RNGs—based on the deterministic software) 
or hardware RNGs (based on the physical phenomenon—classical or quantum). Different division is based on 
the physical nature of the generation process—-classical RNGs and quantum RNGs. These two main divisions’ 
perspectives partly overlap—software RNGs are purely classical, while hardware RNGs are divided into classi-
cal, quantum, and generators, in which it is impossible to clearly distinguish the nature of the physical process.

There are further divisions within subcategories, e.g., there are different types of pseudorandom number 
generators (PRNGs), among which there are currenty cryptographically secure pseudorandom number gen-
erators (CSPRNGs). Classical hardware RNGs can be divided due to a specific physical process underlying the 
generation, similarly to quantum RNGs. Some generators may additionally test the generated sequences basing 
on the implemented tests and assessing the deviation from the assumed randomness parameters of the generated 
sequence. There are also hybrid generators which combine features of many categories.

The basic subgroup of PRNG are algorithmic random number generators – these generators use an algo-
rithmic process of random sequence generation based on a preliminary random key (initial entropy portion). 
The initialization key represents a portion of entropy that remains unchanged no matter how long the gener-
ated sequence takes or how complex it is. Therefore, the software RNGs are undoubtedly pseudorandom. The 
knowledge of the initial random seed compromises the security and the randomness of the entire generated 
sequence—based on the knowledge of the initial key and algorithm parameters, it is possible to recreate the 
entire generated sequence. In such a case, the sequences generated by PRNG (when the initial random seed is 
compromised) are repeated and remain deterministic, resulting with the generation process as no longer efficient.

Classical hardware random number generators do not require an initial entropy—in this case, the source of 
entropy is a classical physical process. If the available entropy is consumed, such generator must wait until the 
generation process supplies enough portion of a new entropy. Generators of this class are also pseudorandom 
generators due to the determinism of the classical physics, and therefore can be a potential target of an attack. In 
particular, an effective attack on such a generator could be carried out using a quantum computer.

Quantum hardware random number generators, or quantum random number generators (QRNG), can be 
divided into three categories23:

•	 Practical Quantum Random Number Generators—fully trusted and calibrated devices. The randomness 
depends on the correct modeling and implementation of the physical quantum process. Typically, the gen-
eration speed is moderate and the cost of the device relatively low. In practice, in these devices, quantum 
randomness is often mixed with classical noise (which, however, can be removed if the basic quantum process 
is modeled appropriately). For these devices, security depends on trust in the device and its components, 
what can be a problem when dealing with third-party vendors.

•	 Self Testing Quantum Random Number Generators—the generated sequence is tested for randomness 
because of limited confidence in the implementation of a physical process. Testing can be based on clas-
sic tests, but also on e.g., verification of the existence of quantum entanglement, by checking the Bell 
inequalities24. These devices are also known as device independent quantum random number generators25. 
Due to the complexity of the testing process, such generators are usually slow or require additional complex 
testing devices.

•	 Semi-testing quantum random number generators—this category includes devices in which the randomness 
testing has been reduced by virtue of the implementation confidence. This allows for an optimalization of 
the speed parameters with the cost of confidence in the generated randomness. Some components in such 
devices are considered safe and trusted due to their precise characterization, others cannot be considered as 
such, and therefore it is necessary to perform more extended tests.

Randomness definition
Many definitions of the randomness have been developed, along with many different concepts of testing it. One 
of the basic concepts of randomness was given by Kolmogorov in the 1950s—it was based on the computational 
complexity. In this approach (the so-called Kolmogorov complexity), the generated sequence is random if it is 
of high Kolmogorov complexity26. This definition of randomness, similarly to others (described briefly below), 
turns out to be incomplete in the sense that it will always be possible to prepare a deterministic generator that 
will generate a predictable sequence, and yet it will pass all the proposed statistical tests as defined (as there is 
uncountably many different infinite bit sequences thus the complete set of tests should also be uncountably 
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infinite, which makes it impossible to be properly described). Therefore, the natural randomness contained in the 
laws of physics on which to generate unpredictable truly random numbers is sought more and more frequently.

Classical approach to the randomness.  The definition of the randomness presents a major conceptual 
difficulty within probabilistic and statistical theories. While there are general formalized definitions of the ran-
domness associated with the developed mathematical-statistical apparatus, they are unable to provide a com-
plete formal description of the unpredictable true randomness.

A detailed discussion of the theoretical foundations of the classical concept of the randomness can be found 
in the Supplementary Information A.

However, irrespective of the assumed theoretical approach, any of them does not seem to constitute a complete 
condition of the randomness. The concept of fundamental unpredictability seems to be closer to the essence of 
the randomness, despite the imperfections of formal attempts to formulate an appropriate description.

According to the arguments of Khrennikov and Zeilinger27, it is possible that a purely mathematical approach 
to randomness and the formalization of its definition seems to be out of reach, as mathematical tools may be 
insufficient to formulate a theoretical framework for the concept of randomness. Perhaps it is rather physical 
processes that are the realm of reality in which there is true randomness beyond classical determinism in the 
area of quantum physics phenomena perceived as fundamentally nondeterministic.

The problem of randomness in quantum mechanics.  The Copenhagen interpretation of quantum 
mechanics was formulated by N. Bohr and W. Heisenberg in 1927 in Copenhagen, based on the idea of M. Born 
to interpret the wave function in a probabilistic manner (e.g., for a wave function in a positional representation, 
square of its modulus represents the probability density of finding a particle at a given point of the space28). 
Nowadays, this interpretation is often called the standard one, despite the intensive development of a competing 
probabilistic concept called Quantum Bayesianism proposed by Fuchs29, which contradicts some basic assump-
tions in the Copenhagen interpretation.

In the Copenhagen representation, the measurement of a quantum system randomly selects one of the many 
possible classical states initially realizing the superposition of quantum states (cf. Supplementary Information 
B). This choice is due to the so-called collapse of the wave function due to the interaction of an external observer 
(i.e., an external macroscopic measuring system characterized by a number of degrees of freedom corresponding 
to at least the Avogadro number, cf. Supplementary Information B) with the measured quantum system. The 
quantum measurement scheme has been the subject of the research by von Neumann30. As a result, von Neumann 
proposed an “ansatz”, which can be formulated as an axiom stating that when the measurement takes place, the 
wave function of the quantum system collapses in a truly random manner into one of the states of the measured 
observable basis (cf. Supplementary Information B). At any given moment t in time (at which the measurement 
takes place), this can be written as:

where HÂ is a Hilbert space spanned by eigenstates of the observable (Hermitian operator in the Hilbert space)Â 
forming the base {φi} , and �i is the eigenvalue of the Â operator (cf. Supplementary Information B). In this for-
mulation, the measurement consists in selecting, in an unpredictable random manner, one state φi for which ci 
is non-zero. In such a case, the measured quantum system assumes a randomly selected state φi and the eigen-
value �i is reflected in the macroscopic number of degrees of freedom of the measuring device, which allows us 
to observe it in the classic way as the result of a measurement of a certain physical observable corresponding 
to Â . The square of the modulus of ci coefficient defines only the probabilities of the occurrence of different φi 
eigenstates of the measured observable as a random result of the measurement. It is assumed that there are fre-
quency probabilities in this approach, which, however, poses a significant problem in relation to the formulation 
of quantum mechanics. Such an approach assumes the existence of an infinite number of identical copies of the 
measured system, for which the occurrence of certain states in the results of measurements on subsequent copies, 
will be the distribution determined by the coefficients ci . This, however, runs counter to the property of quantum 
measurement, which is destructive and unique (cf. Supplementary Information B).

In other words, quantum measurement is an irreversible process that destroys the original quantum state, and 
is therefore a unique process (which cannot be repeated). This process distinguishes the observer who performs 
this single, unique measurement. Additionally, Żurek’s fundamental non-cloning theorem31 ensures that there 
is no possibility to copy the unknown quantum system being measured, emphasizing the truly unique nature 
of quantum measurement.

The frequency probability mentioned above is an interpretation that defines the probability of an event occur-
ring in a given process as a limit of the relative frequency of obtaining such an event in the implementation of 
an infinite number of such processes.

where N is the number of process repetitions, and n is the number of process reruns in which the event took place. 
In this context, there is the problem of the difficulty of repeating a quantum measurement infinitely many times. 
This problem was at the heart of the concept of a probability paradigm in quantum mechanics. Fuchs explains 
this by analogy to the weather forecast29. When forecasting the weather for the next day, we are dealing with a 

(1)
ψ(r, t) =

∑

i

ci(t)φi(r),

Âφi = �iφi ,

(2)P(x) = limN→∞
n

N
,
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situation that has never happened in the past, therefore we cannot refer to the frequency probability paradigm 
(as this corresponds to phenomena that can be observed repeatedly). Instead, the Bayesian probability paradigm 
should be considered. The weather forecast must be made on the basis of the knowledge of similar but not identi-
cal situations. Therefore, it can be determined on the basis of the conditional probability. Fuchs argues that the 
same is true for the case of the quantum measurement as it is a unique process due to its destructive nature. This 
approach is called quantum Bayesianism or QBism29. The state of a quantum system can be regarded as objective 
(characterized by the measure of objective probability) or as subjective, measured by the observer’s expectation 
with respect to this system (the approach represented in QBism). These differences can have important ramifica-
tions for the concept of a quantum random number generator. Therefore, the problem of randomness can also 
be related not only to the technical imperfection of the implementation of a given solution based on quantum 
mechanics, but also to the interpretation of quantum mechanics itself, which is not unambiguous in this respect.

In the quantum aspect, the cause of the randomness is an unknown quantum state (an unknown coherent 
superposition of known states, cf. Supplementary Information B), and the random decoherence (measure-
ment) provides an unpredictable random variable. However, a question arises here about the preparation of the 
unknown state and whether it is perhaps known to another observer who could possibly communicate with a 
local observer taking a measurement on what he believes is an unknown state. Therefore, it seems that the true 
definition of the randomness may be based on the quantum measurement process, but only of a true quantum 
information, and therefore fundamentally undefined—unknown to any classical observer. Whether such infor-
mation exists is an unsettled question and raises problems of philosophical epistemology. One can, however, 
notice some interesting properties of the randomness of such information if it did exist. It turns out that the 
randomness contained in a single qubit of such unknown information may be equivalent to the randomness 
contained in any arbitrary number n of qubits and is related to the concept of quantum entanglement (cf. Sup-
plementary Information B).

Quantum Random Number Generator (QRNG)
Generating sequences of random numbers is of great practical importance as indicated above. Such sequences 
are crucial in IT security implementations, e.g. cryptographic techniques (both classical32,33 and quantum34–36), 
in numerical mathematical calculations and simulations (mainly in Monte Carlo calculations)37,38, in physical 
tests18, in games and lotteries etc. The available numeric routines only generate pseudorandom bit sequences. 
They are sufficient, for example, for computer games, but for cryptographic security techniques and for accurate 
mathematical simulations, they do not meet the randomness requirements (they can be tested using prob-
ability calculus and statistics26,39, however, it must be remembered that a selected fragment of a pseudorandom 
sequence may successfully pass randomness tests, yet still remaining deterministic in its nature). This situa-
tion results from the statistical nature of the tests themselves and means that the decisive factor is the negative 
(rejecting the sequence as definitely pseudorandom) rather than the positive result of such tests. An example 
of a simple pseudorandom number generator is the congruence algorithm (Linear Congruential Generator): 
(a, b, m are appropriately selected known constants): the initial state is the seed value, the output bit which is 
taken arbitrarily, the next bit is generated according to the recipe: new state = aÃ − old state + b mod(m) , 
generated bit = new state mod(2) . It is a pseudorandom algorithm: (1) it becomes periodic easily, (2) there are 
known methods of guessing a, b, m based on the sequence observation. Another example of a pseudorandom 
generator is an iterative call to a cryptographic hash function (such as MD5 or SHA1). All pseudorandom 
generators are not safe, i.e., the pseudorandom sequences they generate can be predicted with sufficiently large 
computational resources expenditures, as a result of which these sequences lose the attribute of randomness. 
Often pseudorandom sequences are generated with classical physical pseudorandom number generators related 
to the physical attributes of the computer itself, such as, e.g., hard to predict intervals of input-output activity in 
the computer, fluctuations in processor temperature, or the frequency of the keypad signal. The various hardware 
electronic noise generators considered to be truly nondeterministic are in fact pseudorandom generators. For 
example, we can use the analogy of randomness in the case of bubbles of water vapor on the surface of boiling 
water. Considering the microscopic nature of the initiation of the production of closed surface elements (vapor 
bubbles) inside the liquid, when the water vapor pressure exceeds the hydrostatic pressure, it could be assumed 
that the volumetric boiling which translates into an irregular, dynamic pattern of the surface of the boiling water 
is random. However, it is easy to notice that, for example, by pouring a small amount of sand into the water, you 
can determine the points of bubble formation, and the appearance of the boiling water surface can be strongly 
changed through the sides of a strong fan – in this way it is easy to introduce the so-called bias, with which it 
is possible to substantially modify a seemingly random behavior. This may also be similar to a simple bias for 
the throw of an asymmetrically loaded dice or a coin with an asymmetrically profiled edge. In such cases, the 
disruption of randomness in large sequences may be very important (which is easily illustrated by dishonest 
tricks, e.g., in games with marked cards, loaded dice, or magnetically distorted roulette).

Quantum rules for generating true random sequences.  The generating of truly random sequences 
of bits by biased generators is an important challenge in computer science, cryptography, and statistical applica-
tions. The dominant view is that no classical realizations are able to generate truly random sequences of bits, 
because of the determinism of the laws of classical physics. So what remains is quantum physics, and it is refer-
enced by the quantum random number generators QRNGs. Why is quantum physics unique in this regard? The 
answer is related to the von Neumann projection axiom28 adopted in quantum mechanics (cf. Supplementary 
Information B) concerning the absolutely random unpredictable result of quantum measurement. According to 
the quantum picture of the world, the state of a given system (let’s say a particle) is determined by a complex wave 
function, varying in time and space, which is an element of a Hilbert space – a linear complete space (i.e., Banach 
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space) according to the metric induced by the scalar product. The square of the module of the wave function 
determines the probability of finding a particle at r at time t (normalization to 1 of the modulus squared of the 
wave function means that there is a single particle in the entire 3D space at any time t). If the observer does not 
measure (observe), then the quantum state evolves unitary and deterministically in the Hilbert space according 
to the Schrödinger equation,

where � = 1.05× 10−34 Js is a Planck constant, and Ĥ is the operator of energy called the Hamiltonian. The 
equation (3) replaces the Newton equation in quantum mechanics. It is also a differential equation, but of the 
1st order with respect to time and does not give a phase trajectory, unlike the Newton equation, which as a 2nd 
order differential equation with respect to time clearly defined the phase trajectory – position and momentum 
(or speed = momentum/mass) under given initial conditions for position and momentum. It was the so-called 
classical determinism – a future unambiguously determined by the past (initial conditions, and a given equa-
tion). The Schrödinger equation (3) also gives determinism, like any differential equation satisfying the existence 
and uniqueness theorem (which can be written as: for ordinary differential equations satisfying the so-called 
Lipschitz condition—it is satisfied e.g., for continuous and smooth functions giving an equation—exists one and 
only one solution to a differential equation passing through a given initial condition; these unique solutions are 
also generalized to partial differential equations, which include the Schrödinger equation, due to the differential 
form of the Hamiltonian), but it is quantum determinism, i.e., the wave function traverses in the Hilbert space 
an unequivocal trajectory for a given initial quantum state �(r, t = 0) (solution to the equation (3)),

where the evolution operator Û = eiĤt/� is unitary, Û+ = Û−1 (this is what it is for the Hermitian Hamiltonian, 
Ĥ+ = Ĥ , here plus means a Hermitian conjugation (in quantum mechanics, the Hilbert space is often chosen as 
the space of functions integrable with their modulus-square, the so-called L2 space with the scalar product of the 
function defined as follows, (� ,�) =

∫

�(r)�(r)∗d3r ) defined on the scalar product according to the formula 
(Â� ,�) = (� , Â+�) ). The unitarity of the evolution operator guarantees the preservation of the scalar product, 
the base and the dimension of the Hilbert space, and generally the preservation of the ’quantum information’ 
contained in the wave function during the evolution. However, this information is not available to the observer 
(his awareness) who understands only the measurement result in the form of a single real number (he has a classic 
awareness oriented towards classical measurements). It should be noted here that the classical measurement in 
classical physics was non-destructive, repeatable and did not distinguish the observer (e.g., measuring the length 
of a pencil does not destroy the pencil and can be repeated by various observers—as a result, a random variable is 
obtained depending on the accuracy of the measuring cup and the care taken in making the measurement—this 
randomness is pseudorandom, classic and related to the measuring device, and it is easy to introduce here a bias).

The quantum measurement is different—it is destructive (during the measurement the measured state of 
the system disappears irretrievably), unique (because it is destructive) and it distinguishes only one observer. 
The measurement result is absolutely random. This is where the quantum randomness according to the von 
Neumann axiom is located. You can measure observables in quantum mechanics, i.e., quantities represented in 
Hilbert space by Hermitian operators, those that do not change under the influence of the Hermitian conjuga-
tion, Â+ = Â . The eigenfunctions of Hermitian operators create ON (orthonormal) bases in a Hilbert space, 
and the corresponding eigenvalues are real (for the operator Â in a Hilbert space, the solution to the equation, 
Âψj = �jψj , defines the eigenfunctions ψj of this operator and eigenvalues �j ; for Hermitian operators, Â+ = Â , 
i.e., measurable observables—e.g., the momentum operator p̂ = −i�∇ , operator of the position r̂ = r , energy 
operator Ĥ = −�

2∇2

2m + V(r) , V(r) is the potential energy—eigenfunctions create ON bases in Hilbert space and 
eigenvalues are real—such as those needed for the results of measuremets understandable for classic conscious-
ness). If an observer measures the size-observable on the state of the system at some selected point in time t, 
then according to the von Neumann axiom follows: 

1.	 The state collapses to one random observable eigenfunction;
2.	 The measurement result is the real eigenvalue of this randomly selected eigenfunction;
3.	 The system continues its evolution by starting with a new random start function.

As a result of von Neumann projection, the system ’forgot’ about its previous unitary evolution (deterministic 
in Hilbert space) from its previous initial state �(r, t = 0) and accidentally jumped at the time of the measuring t 
for further evolution but already from the state corresponding to the eigenfunction of the measured value ψj0(r) , 
completely independent of �(r, t) . It is schematically shown in Fig. 1.

Von Neumann’s projection (collapse) is completely accidental – it is also irreversible, because to its final state 
the system could be projected from various states and it is not known (due to ambiguity) to which it should be 
returned, and the true initial state of the system disappeared during the measurement. The von Neumann scheme 
determines only the probability of a random selection of the eigenstate of the observable with the number j0 . 
Due to the fact that the eigenvalues of the observable created the base ON in the Hilbert space, the state could 
be presented in this base,

(3)i�
∂�(r, t)

∂t
= Ĥ�(r, t),

(4)�(r, t) = Û�(r, t = 0) = eiĤt/��(r, t = 0),

(5)�(r) =
∑

i

ciψi(r),
∑

i

|ci|2 = 1,
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in the equation (5) the coefficients ci are complex (the Hilbert space is defined over the body of complex numbers 
in the quantum mechanics) and the sum of their squared modulus is equal to 1 due to the normalization of the 
system wave function and of eigenfunctions of the observables. The numbers |ci|2 , real, non-negative, not greater 
than 1 (as can be seen from (5)) are probabilities – this is the probability of von Neumann’s projection to select 
the state i. All of these states are probable as long as |ci|2 > 0 , but only one of them, i = j0 , is realized. Which j0 
is, it is not known in advance—only after the measurement it is known how the von Neumann projection took 
place. It is a random process. It is not covered by the unitary quantum evolution according to the Schrödinger 
equation. It is not known why the von Neumann projection takes place and why it is random and introduces 
irreversibility during the measurement. The von Neumann projection, however, is correct with all known (thou-
sands and more) different quantum measurements and is therefore taken as an axiom.

To approximate the von Neumann projection scheme, a simplified classical illustration can be used (however, 
it must be remembered that this is an incomplete analogy and the von Neumann scheme cannot be explained 
classically). The quantum state can be visualized as the unknown state (unknown position) of the coin in the 
hand before it is thrown. When the coin is thrown, this condition disappears and one of the two ’eigenstates’ of 
measurement is carried out randomly—heads or tails with a probability of 1/2 for each of the results. After the 
measurement, the coin is in one (random) own state and the measurement result is the corresponding ’eigen-
value’—heads or tails. This simple example illustrates the content of the scheme but is classic—-the coin toss is 
deterministic according to classical mechanics. The von Neumann projection is not deterministic. Therefore, the 
von Neumann scheme is applicable to the generation of truly random numbers and sequences that are unbiased 
in a fundamental manner guaranteed by the laws of quantum mechanics. The implementation of a quantum 
random number generator based on the von Neumann projection requires: (1) the ability to implement this 
projection in practice on a specific system, (2) the ability to prepare the system for projection in the same known 
state. Neither (1) nor (2) is easy to provide, and therefore the structure of the QRNG is not simple and develops 
with advances in experimental quantum mechanics. Referring to the above-mentioned condition (2), one should 
note an important limitation here. According to the fundamental theorem of quantum computing31,40, (No-
cloning), you cannot make copies of an unknown quantum state, only a known state. This is due to the linearity 
of quantum mechanics, while the state copy is nonlinear (quadratic). The nonlinearity of the copy conforms 
only to the numbers 0 and 1 (because 0 or 1 squared is still 0 or 1). These values of 0 and 1 correspond to two 
basis vectors of qubit (and therefore known qubit states – a two-dimensional state in the simplest Hilbert space 
with the basis |1 > and |2 > , the qubit |� >= c1|1 > +c2|2 > ). The known state here is |1 > or |2 > , for which 
c1 = 1, c2 = 0 or c1 = 0, c2 = 1, respectively. These states are copyable. Unknown states, on the other hand, 
are states with c1 = x, c2 =

√
1− x2 , ( |c1|2 + |c2|2 = 1) and those with unknown x ∈ R, x ∈ (0, 1) , cannot be 

copied. The QRNG scheme would therefore include the preparation of a series of known states and carrying 
out a von Neumann projection on them in a different base than they were prepared. If you perform a projection 
in the basis of another qubit, you can obtain an absolutely random sequence of eigenvalues of the measured 
observables – two eigenvalues for a qubit, which can be identified with bits 0 and 1.

Types of QRNGs.  The premise of the absolute randomness of hardware quantum random number genera-
tors is the belief that the von Neumann projection is perfectly random. Thus, the measurement on the super-
position state of at least two states (qubit) leads to the generation of a random sequence. Two stages must be 
distinguished here: 

1.	 Preparation of the input state (it can be the same known quantum state or also a randomly selected state of 
the source—-in the latter case the possible randomness of the source and its quality is also important for the 
randomness of the second stage—the measurement).

2.	 State series measurement—this process generates a quantum randomness and ideally guarantees the absolute 
randomness of the final sequence.

Figure 1.   Von Neumann projection scheme: the quantum state at the moment of measuring the size of the 
observable Â collapses to a randomly selected eigenfunction of this observable, ψj0 and the measurement result 
is a random value on of this corresponding eigenvalue �j0 (the real number). The result is completely random 
and the measurement destroyed the state of �(r, t) , which ’remembered’ its initial condition �(r, t = 0) and the 
system has any further memory on this state. The new evolution no longer remembers this state and begins with 
a completely randomly selected eigenfuncion of the observable ψj0(r, t0).
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The absolute randomness of the final sequence can be compromised by the faulty source. If, for example, the 
source will provide its own state of the measured quantity with some frequency, the randomness of the result will 
be strongly disturbed. Therefore, step (1) is as important as step (2). Moreover, the result of step (2) is always to 
some extent mixed with the classical noise resulting from the macroscopic practical implementation of the von 
Neumann projection. It should be emphasized here that von Neumann projection is always performed with a 
macroscopic device and only in an idealized situation the arrangement of a measurement experiment does not 
introduce random classical disturbances. The generated sequence of bits is extremely susceptible to various forms 
of the bias. Reducing bias is relatively simple, whereas identifying the classical implicit component (correlation) 
involved in the generated sequence is much more difficult and not always effective by software methods. Rather, 
we should rely on the physical recognition of the whole phenomenon and physical identification and minimi-
zation of the classical components of randomness. Various signal whitening algorithms are available for bias 
reducing and de-correlation. They are the most common development of the von Neumann algorithm. Accord-
ing to this algorithm, two successive bits of the sequence are compared, if they are the same, both are rejected, if 
they are 0,1, then 0 is assumed, if they are 1,0, this is assumed to be 1. The resulting sequence is balanced, but at 
least twice as short and random as there is no correlation in the output sequence. More advanced randomization 
extractors are e.g., Trevisan extractor41 or Toeplitz extractor using Fast Fourier transform42. In general, random 
sequence bleachers work by themselves as pseudorandom generators. A good example is the Blum, Blum, Shub 
(BBS) algorithm43. It returns the sequence from the output seed x0 , according to the recipe,

where M = p× q , p, q are high prime numbers. The bit-wise result of the procedure is xn+1 parity or, for example, 
the last significant bit xn+1 . The seed x0 must be relatively prime to q and p and cannot be 0 or 1. An interesting 
feature of the BBS generator is the analytical form of the result,

where �(M) is the Carmichael function. This function, defined by a positive integer n, denoted as �(n) , is defined 
as the smallest positive integer m such that am = 1mod(n) for each integer of a relatively prime with respect to 
n. So it’s easy to guess the whole random sequence knowing the seed and numbers p, q.

The use of various anti-bias and anti-correlation algorithms (balancing and decay whitening) is a software-
based raw sequence processing and completely deterministic (though usually difficult in terms of hash func-
tions). Despite the effective removal of bias, excessively complicated procedures of randomness extractors can 
themselves disturb/obscure the quantum randomness contained in the raw sequence, adding their own pseu-
dorandom component to the mixture with classical noise contribution. Therefore, it is important to search for 
hardware solutions of a quantum random number generator with a relatively small classical admixture. QRNGs 
using the von Neumann qubit measurement, e.g., of a photon registering, are limited in the relaxation rate of 
the measuring device – single photon detectors (e.g., avalanche diodes or photomultipliers) have an inertia of 
the order of 100 ns, which limits the random sequence generation rate to Mb/s. This is too low a generation rate 
for cryptographic applications where the required speed should be up to Gb/s or even 100 Gb/s. According to 
the review of QRNGs44, such gigabyte speed can be demonstrated in generators strongly supported by software, 
which is a compromise for performance.

QRNGs that test the quantum randomness of the generated sequence are also proposed. Quantum random-
ness authorization is used here by verifying violation of the Bell’s inequality and discarding fragments not meet-
ing this criterion28. Such generators obtain a high level of confidence even with incompletely characterized and 
random sources. However, they do slow down the routine44.

Application of Fermi golden rule to QRNG constructs.  The main and innovative goal of this paper 
is the analysis of a new and original concept of QRNG not based on conventional von Neumann projection. 
The work to date on the quantum generation of randomness has been limited mainly to the concept of the von 
Neumann projection and the related unpredictability of its result. In a heuristic way, in relation to QRNGs, the 
randomness of quantum tunneling through a semiconductor barrier junction was also discussed, based on the 
fact that only the probability of the tunneling is also random in a quantum sense.

We notice, however, that in quantum mechanics not only the von Neumann projection is the source of ran-
domness (or possibly tunneling). In our opinion, the essence of quantum randomness is the interface between 
quantum and classical information. Ihe classical reading of quantum information is the source of randomness. 
Without measurement, the system remains in a coherent superposition. As a result of the measurement the coher-
ent superposition is removed in a random manner. The cause of the random result seems to lie in the percola-
tive trajectory of loading quantum information into a classical measuring device at the level of its microscopic 
structure (cf. Supplementary Information B), and not in the measured system (qubit). The cause of randomness 
is the decoherence.

Fermi golden rule28 (cf. Supplementary Information B) describes the probabilities of a quantum transition per 
time unit under the influence of a time-dependent perturbation (switched on at some instant and turned off after 
some time), but with the continuous spectrum of the final states for a quantum system. Here is also involved the 
decoherence being the source of the randomness. The probability of a quantum transition in a discrete spectrum 
of a quantum system induced by the time-dependent perturbation is proportional to T2 (T is the time duration of 
the perturbation action)28, only after introducing the continuous spectrum of the measured system it attains the 
features of classical probability proportional to T, so that the transition probability per time unit is constant. A 
purely quantum transition in the discrete spectrum is clearly non-classical—proportional to T2 , i.e., ’accelerates’ 

(6)xn+1 = x2nmod(M),

(7)xi =
(

x
2imod�(M)
0

)

mod(M),
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with the passage of time, which we do not observe in the classical world. This ’acceleration’ can be understood 
by solving the exact quantum problem of so-called Rabi oscillations28—i.e., of cyclic transitions between two 
qubit stationary states upon the time dependent periodic perturbation (cf. Supplementary Information B). The 
probability of a transition between these states is determined by the function ∼ sin2(αT) ≃ T2 , where the last 
approximation is correct for small T, that is, in accordance with the quadratic time dependence of the transition 
probability in the time-dependent perturbation calculus mentioned above. The transition ’accelerates’ quadrati-
cally but next it slows down squarely and ’accelerates’ in the opposite direction—Rabi’s quantum oscillations 
arise. However, when the final state of the system (then it is not a qubit) belongs to the continuous spectrum, 
Rabi oscillations and the quadratic acceleration of the transition disappear with time and the conventional 
classical transition takes place with a constant probability per time unit. It is important because this transition 
which looks like classical is in fact quantumly random. Thus here is hidden a source of truly random signals. 
The quantum transitions according to the Fermi golden rule is unconditionally random, as in the von Neumann 
projection, because, similarly to the von Neumann measurement scheme, decoherence works here—either as 
a collision of a small quantum system (qubit) with a giant (with of order 1023 degrees of freedom) classical 
system, in which the result is being imprinted, or as an introduction, by the giant classical system, of a continu-
ous (like in the classical case) energy spectrum of final states for quantum transitions. Thus, the Fermi golden 
rule is as good for implementing the QRNG as is the von Neumann projection. The processes according to the 
Fermi golden rule are e.g., absorption, emission (induced or spontaneous) of light, registration of radio waves, 
thermal emission of electrons and numerous electronic effects at the microscopic level—everywhere where in 
the Boltzmann-type kinetic formalism all collisions are governed by the Fermi golden rule. Plasmon coupling 
effects, for example, of a metallic nanoparticle illuminated with light with a substrate of a semiconductor solar 
cell, are also quantum random events. Fermi golden rule opens up a huge reservoir of various possible QRNGs 
arrangements not exploited as of yet. Going in this direction, one would only need to determine the source of 
entropy—the initial state undergoing the quantum transition according to the Fermi golden rule. A standard 
photovoltaic cell, a glowing photo-emission diode or even a light bulb, are examples of an entropy source—the 
resulting noise of the relative average signal from these devices will have a high entropy quantum component. 
However, each time it is necessary to analyze additional classical and thermal noises, which would mix with the 
true quantum randomness. The question here arises to what extent a thermal noise is separable from a quantum 
noise—in quantum statistical thermodynamics it is not separable45. It should be remembered that classical ther-
modynamics (Boltzmann decomposition) is just the theoretical boundary of something more general—quantum 
Gibbs distribution (canonical or grand canonical ensemble)—in which one cannot separate quantum noise 
from ’thermal noise’. The thermal noise in QRNG implementations is not a disturbing and not a pure classical 
component—although it causes a strong bias, but the fluctuations around the mean value of the signal always 
remain quantum. This is similar to the quantum properties of light (known from quantum optics46)—each light 
is in fact quantum in the sense that either the number of photons or the phase of the e-m field and a related to 
photons e-m field itself cannot be simultaneously determined according to the uncertainty principle. Even if we 
deal with absence of photons (full darkness), i.e., the number of photons equals 0, the e-m field cannot be zero 
and must fluctuate randomly without any determined value46. The same happens for any fixed number of pho-
tons, which must be associated with a randomly fluctuating e-m field. And conversely, if the e-m field is steady 
well-defined, then the number of photons must randomly fluctuate. Such types of randomness are absolutely 
unpredictable—they are quantum.

Commercial QRNGs summary.  The Table 1 summarizes the essential features of the commercially avail-
able quantum random number generators presented in the Supplementary Information C. It is worth emphasiz-
ing that regardless of the quality of the quantum nature of a given generation process, the testability of, among 
others, NIST battery testing is the primary advantage presented by the manufacturers. Some important aspects 
have been omitted from the table, e.g., the possibility of being miniaturized to the chip size. Doubts about the 
nature of the source of entropy in given solutions were also presented. None of the currently available commer-
cial generators is based on quantum entanglement, which is most likely caused by low generation speed param-
eters, implementation difficulties or costs of such solutions – but on the other hand, no doubt the fundamentally 
quantum nature would outweigh these disadvantages.

Randomness tests for generated bit sequences by statistical analysis methods
A very important aspect of the generation of random bit sequences is testing whether the obtained sequence is 
actually random or not. Despite the problems with the formal definition of randomness (related to an uncount-
able number of infinite zero-one sequences), it is possible to define some probabilistic or statistical properties 
of a perfectly random sequence (e.g., the simplest such property is an equal average number of zeros and one 
in the whole sequence and in any of its trains/subsequences). With regard to these properties, it is possible to 
characterize any generated sequences and check whether in the language of these statistical correlations they are 
closer or further to the perfectly random sequence.

There is, however, a key problem here, namely there are an infinite number of possible statistical tests (e.g., 
a test of the occurrence of a certain pattern, and such patterns in the case of infinitely long sequences are also 
infinitely many). Therefore, there is no complete set of tests, only some tests that seem to be sufficient for the 
given applications (others for the requirements of only the uniqueness of the generated sequence and others 
for cryptographic security). For many years, a certain balance has been sought between the range of tests that 
can be performed effectively (in terms of available computing resources) and the level of randomness guarantee 
that results from them.
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In the Supplementary Information D, the most popularized so-called test batteries or test suits, which are 
the accepted standard for randomness verification, are shortly characterised. A detaild description of the NIST 
Statistical Test Suite can also be found in the Supplementary Information E.

Examples of RNG tests and comparison
Commercial QRNG PQ4000KSI.  QRNG PQ4000KSI (Fig. 2) is manufactured by the American company 
ComScire US.

According to the manufacturer the offered product is a quantum random number generator, although the 
quantum process, being the source of entropy, is not identified. As referred to a shot noise in a transistor, it is 
therefore a quantum random number generator operating according to the Fermi golden rule and the software 
technique of bias removal and whitening the signal used in it is so effective that the manufacturer declares a 
high level of randomness of the output produced at 4 Mb/s. The device is equipped with a USB connection for 
power supply (90 mA). The manufacturer’s suggested quantum entropy is 0.999. The manufacturer argues that 
the thermal shot noise and subliminal tunneling on the transistor translates into voltage fluctuations on the 
capacitor, from where the signal is collected to the binary converter. Although the literature discusses the clas-
sical components of the shot noise, the manufacturer claims that the source of the noise, in his product, is the 
tunnel outflow of carriers on a semiconductor junction. The tunnel effect, apart from the quantum name, does 
not identify the von Neumann projection, but rather it can be related to the probability of crossing the barrier, 
which can be seen as Fermi golden rule quantum randomness. An additional argument is the nanoscopic junc-
tion scale (60 nm) provided by the manufacturer.

Table 1.   Features of commercial quantum random number generators.

QRNG Generation speed Mb/s Link Source entropy Self-test. Compatibility Bit access Doubts

Quantis 4, 16 USB, PCIe Quantum optics. Yes NIST, METAS, CTL, BSI’s 
AIS31 No Quantum simulation

ComScire 4, 32, 128 USB Electr. Yes All No Quantum simulation

Toshiba 8000 USB, SATA​ Quantum optics. No TestU01, NIST No Quality of single-photon 
detectors

PQRNG150 150 USB Quantum optics. No Confirmed for selected No Quality of single-photon 
detectors

Entropy engine 350 PCIe Quantum optics. No NIST, Alphabit, Dieharder, 
FIPS140, TestU01 No Quality of single-photon 

detectors

qStream 1000 Ethernet Quantum optics. Yes NIST and chosen Yes Quantum simulation

QNG2 1000 Chip Tunnel. quantum. No NIST, Dieharder No Quantum simulation

MQRNG 40000 USB, PCIe, PCM Radioactic decay. No NIST, AIS.32, Diehard No Measurement method

quRNG 50 USB Quantum optics. Yes NIST, Dieharder No Quality of single-photon 
detectors

MPD QNRG 16, 32, 64, 128 USB Quantum optics. No NIST, Dieharder, TestU01 Yes Quality of single-photon 
detectors

QRNG100E 200, 600 USB, Ethernet Quantum optics. no GM/T 0005-2012 and NIST Yes Quantumness of the process

Quside FMC 400 400 USB, PCIe, Ethernet Quantum optics. Yes Quside randomness metrol-
ogy Yes Quantumness of the process

Figure 2.   PQ4000KSI quantum random number generator after removing the cover. Generator performance 
4Mb/s of random binary code.
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QRNG JUR01.  The second tested random number generator is QRNG JUR01 produced at the Department 
of Quantum Technologies of WPPT PWr (as part of the NCBiR project POIR.01.01.01-00-0173/15)—Fig. 3. The 
quantum source of the entropy is also not explicitly identified in this system and similarly refers to the sublimi-
nal conductivity across the barrier of a transistor junction, and thus realized with the probability of quantum 
tunneling—quantum transition acc. to Fermi golden rule. It should be noted here that in quantum solutions the 
entropy of a bit is assumed to be a’priori equal to 1, taking the position of the absolute unpredictability of the 
value of this bit. At the same time, for a pseudorandom bit, entropy is assumed to be 0, because the value of this 
bit can be predicted, although often the computational resources expenditure can be very high, which in practice 
makes it difficult for classical computers to guess such bit (however, it is possible and therefore entropy is 0). The 
reduction of the entropy of the quantum bit occurs as a result of the admixture of classical deterministic chaos. 
Using software techniques for the bias removal and the signal whitening, in turn, increases the entropy. However, 
you can never be sure of the role of individual factors, and you should approach their evaluation with caution, 
especially when they are given by the manufacturer. In this context, therefore, the possibility of sampling the 
randomness of the sequence generated with statistical methods and adopting contractual randomness quality 
criteria becomes important.

Pseudo‑RNG under Mathematica Wolfram.  The third generator tested is a pseudorandom generator 
within the Mathematica Wolfram system. In order to generate a 100 MB of binary sequence, code that gener-
ates 0 and 1 was applied to a text file (ASCII encoding) in the RandomChoice function, which with equal prob-
ability selects the given values as a parameter inside curly braces49. The RandomChoice function returns vari-
ous sequences of pseudorandom selections depending on the seed established by the SeedRandom function (by 
default, the seed value depends on the time and certain parameters of the current Wolfram session) and on the 
adopted pseudorandom generator method ( extended cellular automaton generator by default). Using the code, 
a text file with a size of 800 Mb was generated (ASCII encoding—each byte of the sequence represented by an 
8-bit text code)—the data from the file was read as part of the NIST STS tests as ASCII encoded—hence in the 
next paragraph a binary sample of 100 MB length will be mentioned. The code used is shown below,

Statistical testing of selected above generators.  As part of the tests performed with the NIST 
STS randomness test library, 3 groups of data were compared. The first group is a collection of binary ran-
dom sequences generated using a commercial Comscire quantum generator. The second group consists of ran-
dom sequences generated by the current version of the JUR01 quantum generator. The third group are random 
sequences generated algorithmically within the Mathematica system.

Which tests should be selected for randomness analysis is a difficult question. It depends on the analyzed 
generator (data from a given generator), its usage and the determination of random errors that are not acceptable. 
Without such detailed information, all the tests in the NIST STS kit should be used in the randomness analysis. 
To apply the entire test suite, the n parameter (representing the length of a single sequence in bits) should be 
greater than 100,000. NIST Documentation STS50 recommends testing at least k = α−1 = 100 sequences (assuming 
α = 0.01 ). This is also a suitable value for the p value distribution test (test at least 55 sequences). As NIST STS 

Figure 3.   JUR01 quantum random number generator after removing the cover. Generator performance 4Mb/s 
of random binary code (on the right panel visible signal 0,1 on the oscilloscope screen).
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uses some approximation methods to process the value of p, the more sequences you test, the more accurate the 
results you get. STS NIST authors suggest testing 1000 or more sequences50 .

A set of NIST STS randomness tests (15 tests already described) was separately run for each group using the 
publicly available C test implementation offered by the NIST Institute50.

Most empirical randomness tests, including NIST STS tests, are based on statistical hypothesis testing. Each 
of the tests is constructed in such a way as to verify the null hypothesis that the test sequence is random from 
a particular point of view of that test, which may be defined by some statistics of bits or blocks of bits. The test 
statistics is a function of the test data and is able to compress the measured randomness into a single value—
the observed statistics. In order to evaluate the test, the distribution of statistics for the null hypothesis (about 
the randomness of the tested sequence) must be known. Most NIST STS tests take the χ2 distribution or the 
normal distribution as the reference distribution. The observed statistics is transformed to the value of p using 
the adopted reference distribution due to the fact that the value of p can be more easily interpreted. The value 
of p corresponds to the probability that a true random generator will produce a sequence less random than the 
sequence being parsed.

Statistical test input.  Three 100 MB binaries were prepared for testing. The sample from the Comscire quantum 
generator was generated using dedicated software. The sample generated with the JUR01 quantum generator 
was provided by the constructor of the device. The sample from the pseudorandom generator was generated 
algorithmically in Mathematica. Additionally, three 10 MB samples were tested.

Each of the three 100 MB files was split into k = 1000 sequences (each sequence consisted of n = 800,000 
bits) and then subjected to the testing procedure (the entire set of 15 NIST STS tests). The 10 MB samples were 
split into k = 100 sequences.

Some of the NIST STS tests are run in several versions, i.e., selected tests perform sub-tests and then test more 
properites, of analyzed sequence, of the similar type. For example, the incremental sum tests a given sequence 
forwards and backwards – the test involves two sub-tests. Table 2 summarizes the requirements for the values of 
test parameters included in NIST STS. The table also shows the number of sub-tests performed within a specific 
test. For the non-overlapping pattern test, the number of sub-tests performed depends on the m parameter – the 
number 148 corresponds to the default value of the m = 9 parameter.

Basing on Table 2 the following parameters were selected (Table 3).
The test results (as a set of p values) can be interpreted in many ways. NIST has adopted the following two 

interpretations:

Table 2.   Summarizing of parameters required for test (51).

Name of test n m or m Number of sub-tests

Frequency test n ≥ 100 – 1

Frequency test in block n ≥ 100 20 ≤ M ≤ n/100 1

Test of courses n ≥ 100 – 1

Test of courses in block n ≥ 128 1

Matrics test n > 38912 – 1

Spectral test n ≥ 1000 – 1

Test of nonoverlapping patterns n ≥ 8m− 8 2 ≤ m ≤ 21 148*

Test of overlapping patterns n ≥ 106 1

Test of Maurera n > 387840 1

Test of linear complexity n ≥ 106 500 ≤ M ≤ 5000 1

Series test 2 < m < [log2 n] − 2 2

Test of entropy m < [log2 n] − 5 1

Test of increasing sums n ≥ 100 2

Test of excursions n ≥ 106 8

Variational test of excursions n ≥ 106 18

Table 3.   Selected parameter values.

Test name parameter parameter value

Frequency tes in block M 128

Test of nonoverlapping patterns m 9

Test of entropy m 10

Series test m 16

Test of linear complexity M 500
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•	 testing the proportion of positively passing a given statistical test—the number of positively passing a given 
test should be within a specific range,

•	 testing the uniformity of the distribution of p values—p values calculated for random sequences should have 
an even distribution in the interval [0, 1).

Both the Comscire commercial quantum generator and the Mathematica pseudorandom generator passed 
the randomness tests (all 15 tests of uniformity of distribution and 15 tests of proportion for the samples from 
each generator passed). Both generators can then be considered as generating random sequences in the light 
of NIST’s statistical tests. It’s worth noting that the results for both generators are similar – the proportion test 
results for each test are around 99%. It is difficult to notice significant differences between the two generators 
(quantum and pseudorandom) in the analysis of the NIST STS results, which may indicate the fact that during 
the statistical testing of random sequences it is not possible to detect true randomness.

In the case of the current version of the JUR01 quantum generator, more than 7 tests for the first sample have 
failed (another test was carried out with the second sample—also failed) which, according to both the original 
NIST interpretation and the interpretation proposed by51, proves that the generator is non-random and biased. 
Probably the non-randomness character of the analyzed sample captured by NIST STS is caused by a design 
error in the current version of the generator under construction (which has not implemented any whitening 
procedure).

Tests for 10 MB samples in the case of the QRNG Comscire and PRNG Mathematica generators gave results 
indicating non-randomness, which were considered as statistical errors related to too few tested sequences—the 
results were not presented, as the results were focused on the larger 100 MB samples. The value of p as the result 
of a single randomness test that focuses on a given statistical property has a relatively clear interpretation, but 
in the case of a set of tests, interpretation of such results presents some problems. These tests (and their results) 
are often interrelated and interdependent. For example, if the frequencies of the occurances of ones and zeros 
are disturbed (unequal) for a given sequence, it is highly probable that the frequencies in 2-bit blocks will also 
be disturbed. For a clear interpretation of the results (in the form of a set of p values—a separate p value for 
each test), the dependencies/relationships between the test results should be analyzed. This was partially done 
in the work52, but due to the lack of information about the quality of the data (generator quality) used in the 
analysis and the omission of some tests, the authors51 proposed to interpret the results (generator randomness 
assessment) based on the number of proportion tests that ended with a negative result. For this purpose, refer-
ence probabilities of completing the tests of proportion and uniformity of distribution with a negative result 
were determined, depending on the number of tested sequences k and the significance level α . According to 
the calculations, a sample of 1000 sequences can be considered non-random if 7 or more proportion tests fail. 
The NIST STS50 authors recommend that a sample should be considered non-random in the event of a nega-
tive result for one test – requiring the sample to pass all tests to be considered random. In51 it was noticed that 
for larger samples (greater number of tested sequences) the probability of failing one of the tests is higher and 
hence they propose an interpretation based on the analysis of the number of failed tests. In the event that the 
generator fails the randomness test (the sample is considered non-random), both51 and50 suggest that the test 
should be performed again for the next sample to determine whether the test result is a statistical anomaly or 
clear evidence that the generator is non-random.

Proportion of sequences passing test The probability that a random sequence will pass a given test is equal 
to the completion of significance level 1− α . For multiple random sequences, the proportion of sequences pass-
ing the test is usually different but close to 1− α . There is a high probability that the value of such a proportion 
should fall within a specific numerical range around the value 1− α . NIST STS determines the range of acceptable 
proportions using the α significance level (0.01 by default) and the k number of the tested sequences:

For the value α = 0.01 and number of tested sequences k = 1000 the value of the proportion should fall into 
the interval 0.99 ± 0.0094392.

Uniformity of p value distribution Values of P calculated in a single test should be evenly distributed over 
the interval [0, 1) . Hence, the uniformity of the p distribution formulates a hypothesis that can be verified with a 
statistical test. NIST STS uses the χ2 single-sample test to evaluate the uniformity of the distribution of p values. 
The χ2 test measures whether the observed discrete distribution (histogram) of a certain feature corresponds to 
the expected distribution. In NIST STS the interval [0, 1) is divided into 10 sub-intervals and the test χ2 checks 
if the number of p values for each of the sub-intervals is close to the value of k/10 (for k = 1000 , k/10 = 100 ). 
The value in the ’P value’ column in the result table corresponds to the result (in the form of p value) of the test 
of the uniformity of the distribution of p values.

Statistical test results Partial results from finalAnalysisReport.txt files (NIST STS result files with a summary 
of the tests performed) for three test groups—100 MB samples are presented below (cf. Table 4 for Comscire, 
Table 5 for JUR01, Table 6 for Mathematica). Each row of the result set corresponds to one test (or sub-test). The 
values in columns C1, C2, ..., C10 represent the number of single values of p that fall between the ranges of values 
[0.0, 0.1), [0.1, 0.2), ..., [0.9, 1.0). The value in the column “P value” means the test result of the uniformity of the 
distribution of p values calculated for the given test. The value in the column “Proportion” means the propor-
tion of sequences that passed the test. Results interpreted by NIST as non-random are marked with an asterisk.

Both the Comscire commercial quantum generator and the Mathematica pseudorandom generator passed 
the randomness tests (all 15 tests of uniformity of distribution and 15 tests of proportion for the samples from 
each generator passed). Both generators can then be considered as generating random sequences in the light 

(8)1− α ± 3

√

α(1− α)

k
,
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of NIST’s statistical tests. It’s worth noting that the results for both generators are similar—the proportion test 
results for each test are around 99%. It is difficult to notice significant differences between the two generators 
(quantum and pseudorandom) in the analysis of the NIST STS results, which may indicate the fact that during 
the statistical testing of random sequences it is not possible to detect true randomness.

In the case of the current version of the JUR01 quantum generator, more than 7 tests for the first sample have 
failed which, according to both the original NIST interpretation and the interpretation proposed by51, proves 
that the generator is non-random, unless the whitening procedure is applied to the row sequence (not hardware 
implemented in JUR01, however).

Tests for 10 MB samples in the case of the QRNG Comscire and PRNG Mathematica generators gave results 
indicating non-randomness, which were considered as statistical errors related to too few tested sequences—the 
results were not presented, the results were focused on the larger 100 MB samples.

The above examples demonstrated that the NIST’s test is too weak to distinguish between pseudorandom 
classical sequence and true quantum random sequence, at least at the tested sequence length of 100 MB. This test 
was able to detect a bias, however. It actually does it in the case of the second tested QRNG JUR01. The generator 
JUR01 is a row electronic implementation without any hardware bias reduction of bias by whitening methods 
installed. Application of the simple von Neumann algorithm (it considers two bits at a time (non-overlapping), 
taking one of three actions: when two successive bits are equal, they are discarded; a sequence of 1,0 becomes 

Table 4.   Quantum generator Comscire (test sequence of length 100 MB, tested k = 1000 sequences, each 
consistent of n = 800 000 bits), by * (number of performed sub-tests) indicated averaged proportions and 
values of p for uniformity distribution test for results related to particular sequences.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Value P Proportion Test

101 111 99 117 103 90 85 102 78 114 0.112047 994/1000 Frequncy

103 108 108 112 92 91 95 90 103 98 0.775337 992/1000 Frequency in block

91 115 113 100 112 95 106 96 77 95 0.186566 994/1000 Increasing sums (2*)

98 90 123 108 99 98 100 95 100 89 0.486588 990/1000 Courses

93 101 100 110 101 116 84 95 101 99 0.647530 990/1000 Courses in block

78 94 104 107 109 106 90 118 97 97 0.246750 991/1000 Matrices

102 111 92 103 97 84 121 85 93 112 0.152902 988/1000 Spectral

95 101 96 90 110 96 111 106 108 87 0.691081 990/1000 Nonoverlappnig patterns (148*)

124 112 96 85 114 103 86 81 94 105 0.037076 980/1000 Overlapping patterns

124 103 112 113 97 68 89 92 93 109 0.007530 984/1000 General

91 89 109 114 93 110 89 111 95 99 0.440975 991/1000 Entropy

48 61 63 51 54 67 71 59 48 43 0.141976 559/565 Excursions (8*)

49 48 67 48 61 49 78 58 57 50 0.066510 561/565 Variational excursions (18*)

122 102 96 88 96 90 87 121 95 103 0.119508 990/1000 Series (2*)

113 106 101 110 96 96 94 106 84 94 0.635037 989/1000 Linear complexity

Table 5.   Quantum generator JUR01 (sequence of length 100 MB, tested k = 1000 of sequences, each consistent 
of n = 800 000 bits).

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Value P Proportion Test

1000 0 0 0 0 0 0 0 0 0 0.000000* 0/1000* Frequency

527 172 103 65 41 34 19 18 14 7 0.000000* 845/1000* Frequency in block

1000 0 0 0 0 0 0 0 0 0 0.000000* 0/1000* Increasing sums (2*)

1000 0 0 0 0 0 0 0 0 0 0.000000* 0/1000* Courses

107 104 91 94 118 108 93 90 106 89 0.459717 985/1000 Courses in block

104 82 108 108 85 106 98 106 105 98 0.536163 994/1000 Matrices

115 105 92 87 97 104 104 96 95 105 0.749884 991/1000 Spectral

726 106 66 41 22 12 15 7 4 1 0.000000* 631/1000* Nonoverlapping patterns (148*)

149 106 107 102 94 100 69 90 92 91 0.000023* 984/1000 Overlapping patterns

633 122 62 45 39 23 23 12 23 18 0.000000* 723/1000* Universal

1000 0 0 0 0 0 0 0 0 0 0.000000* 0/1000* Entropy

0 0 0 0 0 0 0 0 0 0 – – Excursions (8*)

0 0 0 0 0 0 0 0 0 0 – – Variational excursions (18*)

350 52 52 42 52 59 35 49 51 51 0.000000* 519/1000* Series (2*)

87 102 104 109 100 94 86 107 99 112 0.641284 990/1000 Linear complexity
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a 1; and a sequence of 0,1 becomes a zero—it thus represents a falling edge with a 1, and a rising edge with a 
0—this eliminates simple bias, and is easy to implement as a computer program or in digital logic) occurs to be 
efficient in reducing bias, and with the cost of reduction of the sequence length, the improved sequence passed 
successfully NIST’s test. We suspect that any QRNG needs the reduction of an unavoidable bias linked to tech-
nical implementation and such a procedure is hardware implemented in offered QRNGs, including Comscire.

Toward miniaturization.  Hardware realization of QRNG meets with growing needs to implement 
advanced cryptosystems (including Quantum Key Distribution systems34–36,53) for future Internet and commu-
nication security. QRNGs will be in near future built-in personal computers and even in mobile devices. Thus 
miniaturization of QRNGs is required. The next step in project Jurand (after the first prototype JUR01) was the 
prototyping of the following model of QRNG operating on the basis of Fermi golden rule, by exploiting, as the 
source of the entropy, the photoelectric process in a photodiode coupled to a small LED. The size of the con-
struction has been reduced to 28× 10× 46.5 mm and moreover, a few millimeter integrated circuit (to be next 
developed) has been also designed, which can be easily incorporated into mobile phones and portable comput-
ers. Remarkable, the prototype (as shown in Fig. 4 and in Supplementary Information F) producing entropy 
with the speed 1 Mb/s passed the NIST and Dieharder tests without bias reduction (which evidences that at such 
photovoltaic source of the entropy the possible bias is low).

The small QRNG has been presented in 2020 upon the project NCBiR, POIR.01.01.01-00-0173/15. The 
prototype called JUR02 is miniaturized to the box of size 28× 10× 46.5 mm and integrated with conventional 
USB port allowing for universal easy application in personal computers—cf. Fig. 4. JUR02 successfully passed 
NIST SP-800-22 and Dieharder v. 3.31.1 tests. Testing using the package Linux-ent gives

Table 6.   pseudorandom generator from Mathematica (sequence 100 MB, tested k = 1000 of sequences, each 
consistent of n = 800 000 bits).

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 value P Proportion Test

88 93 109 93 97 100 115 115 107 83 0.262249 994/1000 Frequency

98 100 87 104 105 96 101 112 100 97 0.921624 990/1000 Frequency in block

83 110 98 106 100 117 88 103 100 95 0.440975 993/1000 Increasing sums (2*)

102 95 97 102 95 99 106 96 120 88 0.674543 994/1000 Courses

114 108 107 111 99 104 99 92 84 82 0.281232 984/1000 Courses in block

87 89 121 121 114 107 95 87 81 98 0.019453 992/1000 Matrices

114 120 83 102 86 95 104 107 94 95 0.193767 989/1000 Spectral

102 93 86 93 109 101 118 89 98 111 0.392456 990/1000 Nonoverlapping patterns (148*)

122 106 98 115 98 92 89 101 79 100 0.129620 990/1000 Overlapping patterns

96 98 99 100 108 112 95 78 119 95 0.259616 989/1000 Universal

115 118 117 84 90 79 97 106 89 105 0.032274 987/1000 Entropy

59 43 59 60 66 71 64 63 56 51 0.387323 586/592 Excursions (8*)

55 60 51 53 53 64 62 66 60 68 0.799089 587/592 Variational excursions (18*)

110 112 99 96 107 89 82 96 111 98 0.440975 989/1000 Series (2*)

98 105 80 104 103 116 116 95 85 98 0.202268 990/1000 Linear complexity

Figure 4.   Prototype of miniaturized version of QRNG JUR02 designed at WUST (2020) – it passed all 
NIST/Dieharder tests without the bias reduction, at the speed of entropy creation 1 Mb/s (configured with 
conventional USB controller).
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•	 Optimum compression would reduce the size of this 2064385896 byte file by 0%
•	 Chi square distribution for 2064385896 samples is 255.90, and randomly would exceed this value by 47.23%
•	 Arithmetic mean value of data bytes is 127.5014 (127.5 = random)
•	 Monte Carlo value for π is 3.141579925 (error 0.00%)
•	 Serial correlation coefficient is −0.000035 (totally uncorrelated = 0.0)

The source of randomness in JUR02 is the shot noise in the photodiode and produces the random bit sequence 
at the time rate 1 Mb/s. The simplified block-scheme of JUR02 is shown in Fig. 5 and the scheme of starting 
sequence and the algorithm of random bit generation is visualized in Fig. 6. The exemplary data (2GB) from 
JUR02 are available at address https://halidelabs.eu/QRNG/data.bin.

New concept of a entanglement‑based QRNG protocol with public randomness 
verification
Irrespectively of the QRNG type, due to inevitable implementation imperfections, the fidelity of the quantum 
randomness extraction will always be not ideal (similarly as in other quantum information protocols, which are 
perfect only in theory, e.g., quantum key distribution, but imperfect when implemented). Whether in device 
independent (DI) QRNGs54–56, in self-testing DI approach-type QRNGs57, or in other QRNGs the separation 
of the classical component from the quantum can be done only up to a finite confidence level, and its verifica-
tion can be reduced to statistical predictions (like statistical proofs of Bell, CHSH or Mermin type inequalities 
violation24,58,59, or similar to continuous variable approach statistical analysis23). Thus, it is crucial that quantum 
random number generation should always be accompanied by a classical randomness verification procedure as 
comprehensive as possible60.

It is important to emphasize, that a detailed randomness testing is a task of considerable computational 
complexity, especially testing for the existence of long-range correlations (i.e. verifying the deviations of the 
frequency of occurrences of long patterns, which could manifest potential biases, as standard tests are focused 
rather on short-range correlations). Basically, the reason for that complexity is an exponential increase of the 
number of possible testing patterns with the increase of those patterns length. The concept of an ideal random-
ness can only be used in the case of an infinite sequence, but even so, without a formal mathematical definition, 
due to the uncountable number of all possible testing patterns. But in the case of finite sequences, one can define 
a complete testing in the simplistic manner (surely not an optimal one) as a verification of deviations, from the 
expected values, of the frequency of occurrences of all the patterns with length not exceeding the length of the 
tested sequence. For each sequence of the length m, the expected value of the frequency of occurrences is deter-
mined on the basis of the statistics of an infinite sequence, i.e. 1

2m
 . For the tested sequence of the length n, the 

number of all tested patterns, not longer than n, is equal to 
∑n

k=1 2
k . The exponential growth is clearly visible, 

same as the exponential growth of the computing resources requirements, to keep the testing procedures in the 
regime of effective execution times. What is crucial here is that typically, the QRNG itself (or even together with 

Figure 5.   Simplified block scheme of JUR02.
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the control unit) has a small amount of computing resources, allowing to perform locally a strictly limited tests 
scope in realistic execution times.

Recently Cambridge Quantum Computing together with IBM announced a launch of the world’s first cloud-
based Quantum Random Number Generation Service with integrated verification for the users (initially intended 
for the members of the IBM Q Network)61,62. This service is implemented on the IBM Quantum computers 
network, claimed to be device independent quantum machines in a verifiable manner allowing to certify the 
generated randomness. Such verification procedure is a statistical analysis of the underlying processes of quantum 
randomness generation with the use of the Bell test based on the Mermin inequality, but with an assumption of 
complete shielding of user’s facility (including the quantum device) from the outside once the protocol starts62. 
Such situation is highly restricting due to two main reasons: 

1.	 it requires that user must be equipped with the IBM Quantum Computer with Qiskit module qiskit_rng63,64, 
otherwise, in case of claimed to be cloud-based QRNG service, user have to trust the service vendor, as the 
vendor has full access to generated random sequences, which user would want to use cryptographically;

2.	 the classical statistical analysis, in the case of a high level of confidence, could require huge amount of com-
putational resources (unavailable locally) to be completed in realistic time.

The concept of entangled QRNG protocol with public verification60 is free of such limitations due to unique 
features, like unconditionally secure public randomness testing, overcoming local computational restrictions, or 
diminishing of the average time of the complex randomness testing of finite length bit sequence. In this protocol 
the randomness of the generated single sequence proves the randomness of all the other simultaneously generated 
sequences (or the randomness of the shorter sequence proves the randomness of longer sequence), which is a 
crucial result of multi-qubit quantum entanglement involved60. The idea of the protocol is briefly described below.

The protocol uses a multi-qubit entangled state (in computational basis {0, 1} ), on which quantum measure-
ments (of σ̂z operator) are performed. k + 2 entangled qubit state, in a form as below, is required to obtain k 
secure and publicly verifiable sequences.

Figure 6.   The scheme of the algorithm for automatic starting and calibration sequence and generating of 
random bit sequence implemented in JUR02.
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where q1, . . . , qk+1 , in the last ket of each sum element, are valued according to k + 1 first kets in that element; 
⊕ is the sum modulo 2.

Steps of the protocol in the ideal case are as follows (the not ideal case is discussed in details in60) 

1.	 Preparation of the initial state (as in eq. (9)) in the form of the uniform sum of such kets, that each of them 
has identical sum modulo 2 of every single qubit states defining that ket – the so-called XOR rule valued 0 
(cf. Fig. 7 1.)

2.	 Local measurements of each qubit (cf. Fig. 7 2.)
3.	 n times repetition of steps 1. and 2. to obtain n-bits long sequences, SQ1

, SQ2
, . . . , SQk+1

, SQk+2
 , corresponding 

to the measurement results of the qubits Q1,Q2, . . . ,Qk+1,Qk+2 accordingly. The so-called XOR rule (here 
valued 0) is formulated as the sum modulo 2 of all qubit measurement result values (in the i-th measurement 
series) must be equal equal 0, S(i)Q1

⊕ S
(i)
Q2

⊕ . . .⊕ S
(i)
Qk+1

⊕ S
(i)
Qk+2

= 0 (cf. Fig. 7 3.)
4.	 Public randomness testing of only a single sequence from set SQ1

, SQ2
, . . . , SQk+1

, SQk+2
 (in result this is 

equivalent to simultaneous public randomness testing of all of the sequences but without compromising 
their secrecy), by publicly announcing a sequence in order to verify its randomness by a third party (with 
arbitrary large computational resources). Due to a specific quantum entanglement of initially measured 
qubits the single sequence testing result will also concern all the unpublished sequences (cf. Fig. 7 4.)

5.	 After a successful randomness verification all the remaining sequences are also truly random and all but one 
(here, k sequences) can be used cryptographically (one sequence must never be used or published to ensure 
the secrecy of the remaining generated sequences, due to the XOR rule) (cf. Fig. 7 5.)

In the ideal case, due to the quantum entanglement all the sequences of measurement results, SQ1
, SQ2

, SQ3
, . . . 

share the same statistical properties—the deviations of frequencies of occurrences in sets of patterns of the same 
length are identical for all of those sequences in the limit of sequences length n tending to infinity. Irrespective 
of the number k (k > 2) of entangled qubits Q1,Q2,Q3, . . . ,Qk , a successful verification of randomness of only 
a single sequence SQi proves the randomness of all k − 1 remaining sequences.

Randomness verification of the sequence SQi can be performed publicly, leaving the secrecy of remaining 
sequences ( k − 1 ) completely intact, provided that another single sequence (from the remaining sequences) 
SQj , j  = i will be kept in secret and never be used—which leaves k − 2 secret sequences with the randomness 
proven by the sequence SQi randomness verification result and ready for cryptographic or any other usage.

Public testing allows to perform an arbitrary complex testing (up to the verification of deviation from statisti-
cal prediction of occurrences of all possible patterns for n-bit tested sequence, which is a very challenging task 
in terms of computational resources) overcoming the strong restrictions of computational resources nature of 
the local randomness testing possibilities of the QRNG controlling unit or of the QRNG itself. However, public 
testing should be performed by a trusted party, or as a service within a reputation based model (then the trust 
is based on the reputation and service usability), e.g., one with a blockchain type public testing results database, 
which will be discouraging to falsify tests results (reputation loss for unhonest verifiers), and encouraging to test 
faster and more accurate (reputation gain for honest verifiers).

Another crucial feature of this protocol is a diminishing of an average time of the complex randomness 
testing (which in the case of e.g., finding patterns, the execution times grows exponentially with the increase 
of the length of searched patterns) of finite length bit sequence. With the increase of the number of entangled 
qubits, the number of secret random bit sequences also increases. All of those sequences hold the same statistical 
properties (due to the nature of the proposed protocol)—it is sufficient to test only a single sequence to get the 
information about the randomness of all other sequences. As the time needed to test a single sequence is fixed 
(it depends on the sequence length and does not change with the increase of entangled qubits), thus the average 
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Figure 7.   Protocol of the multiqubit, entanglement based, cryptographically secure QRNG with public 
randomness verification60.
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time (single sequence time divided by the number of sequences sharing the same statistical properties) can be 
brought to arbitrary small value in theory.

Moreover, the generated sequences can be concatenated into a one long sequence, whose length corresponds 
to the number of entangled qubits, and its randomness will still be proven by the randomness of a short single 
sequence of the initial length. In other words, with the increase of the number of qubits composing multi-qubit 
entanglement the complexity of the randomness testing decreases. Hence, with the same amount of the com-
putational resources one can test much longer sequences (in the infinite limit of entangled qubits number the 
randomness testing, in this scope, becomes trivial)60. This interesting observation seems to shed a new light 
on how to understand fundamental theoretical concepts behind recently reported quantum supremacy for the 
randomness testing with use of multi-qubit entanglement.

The recent reports on the programmable entanglement based processor Sycamore21 allows to propose its 
usage for quantum acceleration of classical randomness testing. Sycamore obtained the quantum supremacy 
title, which in fact was later denounced by IBM65 – nevertheless, the exponential growth of the time needed to 
simulate Sycamore classically, with the increase of quantum gates and qubits involved was sustained (currently 
the quantum supremacy title belongs to Chinese photonic quantum computer Jiuzhang22). The Google’s proces-
sor allows to freely choose the order and the type of one-qubit gates ( 

√
X,

√
Y ,

√

X+Y
2

 , as exemplary presented 
by Google’s team21) applied in layers to each qubit and the patterns type of alternating swapping of neighboring 
qubits (with the use of iSWAP gates), locating the operations in the quantum supremacy regime or not. It is 
possible to employ those degrees of freedom to perform a classically unattainable randomness testing. One can 
introduce consecutive parts of the tested sequence as the choosing keys for single-qubit gates layers defining 
subsequent specific quantum circuit configuration. Next for each of such configurations a random sampling 
procedure can be performed (multiple execution with the following quantum measurements to obtain statistical 
distribution of possible quantum states resulting from that specific configuration). Afterwards, all the obtained 
ket distributions (squared amplitudes of kets from all 253 possible kets) from each configuration, can be merged 
together, resulting in a pattern correlated with the tested sequence. As it is possible to shuffle the qubits number-
ing for each configuration (to ensure the lack of distinguishability between all qubits – due to the qubits located 
on the boundaries of the grid), in case of a random tested sequence, one should expect the uniformity of the 
obtained pattern, and any deviations should indicate that the tested sequence is not random. For this test to be 
effective (beyond the simple testing of the patterns occurrences), the parts of tested sequence should be long 
enough to exceed the number of degrees of freedom of the output distribution – the Sycamore processor would 
then operate as a specific type of a hash function (the measurement of qubits irreversibly destroys mutual phase 
shifts between kets in a specific mixture of the all 253 possible kets). Due to the quantum supremacy regime, such 
procedure would not be possible to be calculated effectively in a classical manner. Such usage of the Sycamore 
or Sycamore type processor would constitute a great tool for a public institution offering an open randomness 
testing service in the model of entangled QRNG with public randomness verification protocol.

Conclusion
In this paper, we emphasize the key role of the unconditional randomness of quantum random number gen-
erators in contrast to pseudorandom classical generators. We identify quantum ideal sources of entropy in the 
randomness of quantum measurements according to the von Neumann scheme, and innovatively in quantum 
transitions based on the so-called Fermi golden rule. The latter source of the entropy is extremely useful in mod-
ern constructions of very fast and efficient quantum random number generators. We have proposed two of our 
own prototypes of such quantum random number generators, based on the Fermi golden rule. The first one uses 
the tunneling current in the Zener diode, and the second one uses the shot noise in a photodiode illuminated 
by LED. However, in every case of quantum randomness generator practical implementation, there exists some 
classical component/admixture, causing a bias in the resulting random sequence. In the first prototype of ours, 
the bias was removed by the von Neumann algorithm for whitening the random bit sequence. In the second case, 
the proposed system gave a negligible bias, and the random sequence, generated at the velocity rate of 1 Mb/s, 
successfully passed all randomness tests in NIST and Dieharder batteries.

We also emphasize that the currently used randomness tests are not ideal, and have difficulties in distinguish-
ing pseudorandom sequences from truly random ones (what we have demonstrated with selected examples). 
Achieving greater randomness testing precision is a task, however, highly consuming computing resources, which 
are not always locally available to a sufficient extent. Any external, public testing is destructive for the security of 
the tested bit sequence, effectively preventing its cryptographic use. To circumvent this difficulty, we propose a 
new algorithm for the operation of a quantum random number generator with world’s first scheme of the non-
destructive public randomness testing. The concept uses multiqubit quantum entanglement (at least 3-qubit 
entanglement), and allows any external party to publicly test the randomness, with an arbitrarily high accuracy, 
of only a single bitstream component, while maintaining a complete confidentiality of the other bitstream compo-
nents (their number grows with the initial number of entangled qubits), however, sharing the same fidelity level 
(identical statistical correlations), with regard to their randomness quality as the one published for testing. Such 
approach overcomes the highly restricting local computational resources limitations of randomness testing pro-
cedures, and it allows to lower in average the overall time needed for an arbitrarily complex randomness testing.
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